June 24, 2015

MEMORANDUM

SUBJECT: High Lead Levels in Flint, Michigan – Interim Report

FROM: Miguel A. Del Toral
Regulations Manager, Ground Water and Drinking Water Branch

TO: Thomas Poy
Chief, Ground Water and Drinking Water Branch

The purpose of this interim report is to summarize the available information regarding activities conducted to date in response to high lead levels in drinking water reported by a resident in the City of Flint, Michigan. The final report will be submitted once additional analyses have been completed on pipe and water samples.

Following a change in the water source, the City of Flint has experienced a number of water quality issues resulting in violations of National Primary Drinking Water Regulations (NPDWR) including acute and non-acute Coliform Maximum Contaminant Level (MCL) violations and Total Trihalomethanes (TTHM) MCL violations as follows:

- Acute Coliform MCL violation in August 2014
- Monthly Coliform MCL violation in August 2014
- Monthly Coliform MCL violation in September 2014
- Average TTHM MCL violation in December 2014
- Average TTHM MCL violation in June 2015

In addition, as of April 30, 2014, when the City of Flint switched from purchasing finished water from the City of Detroit to using the Flint River as their new water source, the City of Flint is no longer providing corrosion control treatment for lead and copper.

A major concern from a public health standpoint is the absence of corrosion control treatment in the City of Flint for mitigating lead and copper levels in the drinking water. Recent drinking water sample results indicate the presence of high lead results
in the drinking water, which is to be expected in a public water system that is not providing corrosion control treatment. The lack of any mitigating treatment for lead is of serious concern for residents that live in homes with lead service lines or partial lead service lines, which are common throughout the City of Flint.

In addition, following the switch to using the Flint River, the City of Flint began adding ferric chloride, a coagulant used to improve the removal of organic matter, as part of the strategy to reduce the TTHM levels. Studies have shown that an increase in the chloride-to-sulfate mass ratio in the water can adversely affect lead levels by increasing the galvanic corrosion of lead in the plumbing network.

Prior to April 30, 2014, the City of Flint purchased finished water from the City of Detroit which contained orthophosphate, a treatment chemical used to control lead and copper levels in the drinking water. When the City of Flint switched to the Flint River as their water source on April 30, 2014, the orthophosphate treatment for lead and copper control was not continued. In effect, the City of Flint stopped providing treatment used to mitigate lead and copper levels in the water. In accordance with the Lead and Copper Rule (LCR), all large systems (serving greater than 50,000 persons) are required to install and maintain corrosion control treatment for lead and copper. In the absence of any corrosion control treatment, lead levels in drinking water can be expected to increase.

The lack of mitigating treatment is especially concerning as the high lead levels will likely not be reflected in the City of Flint’s compliance samples due to the sampling procedures used by the City of Flint for collecting compliance samples. The instructions from the City of Flint to residents direct the residents to ‘pre-flush’ the taps prior to collecting the compliance samples. A copy of the instructions provided by the City of Flint to residents will be included in the final report.

The practice of pre-flushing before collecting compliance samples has been shown to result in the minimization of lead capture and significant underestimation of lead levels in the drinking water. Although this practice is not specifically prohibited by the LCR, it negates the intent of the rule to collect compliance samples under ‘worst-case’ conditions, which is necessary for statistical validity given the small number of samples collected for lead and copper under the LCR. This is a serious concern as the compliance sampling results which are reported by the City of Flint to residents could provide a false sense of security to the residents of Flint regarding lead levels in the water and may result in residents not taking necessary precautions to protect their families from lead in the drinking water. Our concern regarding the inclusion of ‘pre-flushing’ in sampling instructions used by public water systems in Michigan has been raised with the Michigan Department of Environmental Quality (MDEQ). The MDEQ has indicated that this practice is not prohibited by the LCR and continues to retain the ‘pre-flushing’ recommendation in their lead compliance sampling guidance to public water systems in Michigan. A copy of the MDEQ guidance will be included in the final report.

In the case of the Flint resident that contacted U.S. EPA (Ms. Lee-Anne Walters), the initial results from drinking water samples collected by the City of Flint in her home
for lead were 104 ug/L and 397 ug/L. The level of iron in the water also exceeded the capability of the measurement (>3.3 mg/L). The lead results were especially alarming given that the samples were collected using the sampling procedures described above, which minimize the capture of lead. When contacted by U.S. EPA Region 5, the MDEQ indicated that the lead was coming from the Walters’ plumbing. Ms. Walters had previously indicated that all of the plumbing in the home was plastic.

Following the confirmation of the initial high lead results, U.S. EPA Region 5 conducted two visits to the Walters’ home on April 27, 2015 and May 6, 2015. Based on an inspection of the plumbing and subsequent sampling conducted at the Walters’ residence, it was determined that except for a few minor metallic connectors, all interior plumbing, including the pipes, valves and connectors, are made of plastic certified by the National Sanitation Foundation (NSF) for use in drinking water applications. Subsequent sampling showed that the faucets in the home appear to be compliant with the new lead-free requirements and are also not the source for the high lead levels. Our inspection of the interior plumbing and analysis of follow-up sampling results demonstrate that the home plumbing network is not the source of the high lead levels found at the Walters’ residence. The photographs and all sampling results will be included in the final report.

Based on the U.S. EPA inspection and documentation of the plastic plumbing at the Walters’ residence, it was suspected that the high lead was being introduced into the Walters’ home plumbing from outside the home, likely from a lead service line. Three portions of the service line were extracted during a subsequent trip on May 6, 2015 and sent for analysis, when the Walters’ service line was replaced. Analyses performed to date indicate that a portion of the service line is made of galvanized iron pipe. Inspection of the remaining portion from the water main to the external shut-off valve confirmed that the portion from the water main to the external shut-off valve is a lead service line.

Ms. Walters has also provided U.S. EPA with medical reports on her child’s blood lead testing indicating that the child had a low blood lead level (2 ug/dL) prior to the source water switch and an elevated blood lead level following the switch (6.5 ug/dL). Redacted copies of these reports will also be included in the final report.

Subsequent to the discovery of high lead levels in the Walters’ drinking water, the water to the Walters’ home was shut off on April 3, 2015. The water was briefly turned back on to collect additional samples on April 28, 2015. Since the water had stagnated for an extended period of time, the kitchen tap was flushed for 25 minutes the night before collecting the samples. Three sets of samples were collected at different flow rates (10 at low flow, 10 at medium flow and 10 at high flow).
The drinking water samples collected from the Walters’ residence on April 28, 2015 contained extremely high lead levels, ranging in value from 200 ug/L to 13,200 ug/L (see below).

Sample results and graph are provided courtesy of Virginia Tech

Additional sample results from resident-requested samples have also shown lead levels in excess of the lead action level. As with the samples collected by the City of Flint for compliance, the resident-requested samples are also being collected using the ‘pre-flushing’, so the lead levels captured in these samples likely do not represent the worst-case lead levels in the water and the actual lead levels at these homes may be much higher.

Pending completion of the final report, my interim recommendations are as follows:

1. The U.S. EPA should follow up with the MDEQ and the City of Flint on the recommendation made by U.S. EPA to MDEQ on June 10, 2015 to offer the City of Flint technical assistance on managing the different water quality issues in Flint, including lead in the drinking water. Although there have been two written assessments regarding water quality and operational issues in Flint at the time of this report, they do not address lead in drinking water. The first is an Operational Evaluation Report (OER) produced in November 2014 by Lockwood, Andrews and Newnam, Inc. to assess the factors contributing to high Total Trihalomethane (TTHM) levels in Flint following the source change. The focus of this report is to identify potential causes and remedial actions for lowering TTHM levels. The second report (Water Quality Report) produced by Veolia for the City of Flint on March 12, 2015, is an assessment of Flint’s water quality and operations which provides advice to the City of Flint primarily focused on TTHM control and other operational issues. Both reports were written prior to the recent discovery of high lead results in Flint drinking water. As such, the reports do not take into account the potential effects on lead levels in drinking water.
As previously mentioned, the City of Flint currently has no mitigating treatment for lead and is also planning another source water change in the near future. U.S. EPA’s Office of Research and Development in Cincinnati has extensive experience in corrosion and corrosion control treatment and distribution system issues and would be a valuable addition to the drinking water advisory group for the City of Flint. Copies of the qualifications and experience for Michael Schock and Darren Lytle have been forwarded to MDEQ.

2. U.S. EPA should review the compliance status of the City of Flint with respect to whether the system is in violation of the LCR requirement to install and maintain optimal corrosion control and whether the MDEQ is properly implementing the LCR provisions regarding optimal corrosion control treatment requirements for large systems. Pursuant to 40 CFR Section 141.82(i), the EPA Regional Administrator may review treatment determinations made by a State and issue federal treatment determinations consistent with the requirements of the LCR where the Regional Administrator finds: (1) A state has failed to issue a treatment determination by the applicable deadlines; (2) A State has abused its discretion in a substantial number of cases or in cases affecting a substantial population; or (3) The technical aspects of a State’s determination would be indefensible in an expected Federal enforcement action taken against a system.

3. The U.S. EPA should review whether relevant resident-requested samples are being included by the City of Flint in calculating the 90th percentile compliance value for lead. Recent drinking water tests conducted at homes in Flint for lead that are not part of the compliance sampling pool have revealed high lead levels in the drinking water. The U.S. EPA memorandum signed on December 23, 2004 provides clarification on compliance determinations and states that customer-requested samples are to be included in the 90th percentile lead compliance calculation where the sampling is conducted during the monitoring period from sites and sampling procedures meeting the LCR criteria. Given the prevalence of lead service lines in the City of Flint, should these sample results be from homes with lead service lines, the sample results would be considered compliance samples under the LCR.

Also attached is a timeline of events for Flint, Michigan. Should you have any questions regarding the information or recommendations provided, please let me know.

cc: Liane Shekter-Smith (MDEQ)
 Pat Cook (MDEQ)
 Stephen Busch (MDEQ)
 Michael Prysby (MDEQ)
 Marc Edwards (Virginia Tech)
 Michael Schock, EPA-ORD
 Darren Lytle, EPA-ORD